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Abstract 

A precise battery model is set up that gives the terminal voltage as a function of current and time. The model structure is based on a 
Randles’ equivalent circuit. The non-linear dependence of all equivalent-circuit elements on current and frequency is taken into account. 
Model parameters are determined by impedance spectroscopy with various superimposed direct currents. Detailed measurements show 
that this battery model calculates the terminal voltage of lead/acid batteries with a tolerance of less than *0.2%. Cl 1997 Elsevier 
Science S.A. 
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1. Introduction 

The simulation of the energy consumption of electric vehicles requires precise battery models. Until now, phenomenolog- 
ical models of lead/acid batteries are usually applied. These models require many parameters. Despite this, the results of 
such models are rarely satisfying. Moreover, the high numerical expense caused by large parameter setls leads to an 
inefficient application of phenomenological models. Accordingly, this paper presents a battery model that is based on 
physical and chemical fundamentals. At first, the small-signal performance is evaluated (called ‘differential performance’). 
After that, the large-signal characterization of the battery (called ‘integral performance’) is derived by integrating the 
equations that describe the differential performance. All calculations are numerically simple so that the model is well suited 
for simulation programs. 

After setting the requirements for the battery model with respect to the practical use, the physical and chemical equations 
are built and applied to a lead/acid battery with an immobilized electrolyte. The resulting differential equations are solved 
in the frequency domain and their results are interpreted as electrotechnical quantities of an equivalent circuit. Then, the 
model parameters are derived for a Sonnenschein dry-fit traction block (Type 6V-160) with the help of the impedance 
spectroscopy. Finally, the battery model is verified by measurements on a traction battery under real driving conditions. 

2. Requirements for the battery model 

Since electric-vehicle driving usually does not take more than 2 h, the dynamic performance of the traction battery has to 
be regarded only down to frequencies of about 50 ~Hz. In order to calculate the energy consumption of vehicles, models 
are required with an accuracy that is better than +OS%. Therefore, the battery model has to represent the terminal voltage 
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Table 1 
Validity domain of the battery model 

Frequency 10 Hz- 10 pHz (discharging) 10 Hz- 10 mHz (charging) 
Voltage-amplitude tolerance +0.5% V, = f 10 mV/cell 
Current F300A 
State-of-charge IO%-90% 
Not taken into account Temperature, aging, variance in type and by production 

with a tolerance of less than + 10 mV per cell. At -t 300 A, the maximum driving and braking current is approximately ten 
times the nominal 5 h current of the traction battery referred to in this paper. 

The fact that all phenomena that influence battery performance depend on the state-of-charge (SOC) is ‘only important for 
those batteries that are almost completely charged or nearly empty. In the case of about 10% up to 90% drawn charge, the 
influence of SOC may be ignored. In order to reduce the numerical expense, the SOC dependence of all overvoltages is 
neglected in this modelling. 

Since the battery model is used for the simulation of vehicle driving only the discharging operation is modelled. The 
charging operation is only considered so far as it is necessary for intervening charging by regenerative braking. Therefore, 
the model is only valid for charging with frequencies higher than 10 mHz. Table 1 shows the validity domlain of this battery 
model. 

3. Structure of the battery model 

The battery model is based on a Randles’ equivalent circuit [I]. Given the case of no current flowing, the voltage adjusts 
to an equilibrium voltage V,, that can be described as an ideal voltage source depending on the SOC. A constant equivalent 
resistance Ri is used for modelling all conductive media of the battery. 

The electrolytic double-layer capacitance is modelled by C,. The Faraday branch of the equivalent circuit contains the 
charge-transfer resistance R, and two Warburg impedances Z,, and Z,, which model the diffusion within the electrolyte. 
The complete equivalent circuit of the lead/acid battery is shown in Fig. 1. Please note that nearly all circuit elements are 
non-linear. 

Since all phenomena that influence battery performance exhibit a non-linear dependence on current, only a measurement 
of dynamic values is suitable. Impedance spectroscopy is well suited for such measurements unless the measuring 
instrument is able to supply the battery with direct currents of the order Z, [2]. The classification of the results as different 
types of overvoltages can be easily achieved (Fig. 2 shows an example) [3]. 

The time constant that characterizes the performance of the charge-transfer reaction and double-layer capacitance is 
smaller by at least one order of magnitude than the time constants that occur in the concentration element (see Fig. 2). 
Therefore, the Randles’ equivalent circuit is simplified as shown in Fig. 3 without changing the values of its elements. 

In the following, each part of the battery model is described. Since the determination of V,-,, R, ancl C, is based on 
fundamentals that could nearly all be taken from literature, the determination is only discussed briefly in this paper. By 
contrast, the diffusion modelled by Warburg impedances is described in detail, because of its strong dependence on 
frequency and current. 

Fig. 1. Complete equivalent circuit of a lead/acid battery based on Randles’ theory. 
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Fig. 2. Nyquist plot of lead/acid battery for small direct currents (idealized). The effects of various overvoltage mechanisms on the battery locus-diagram 
can be separated into different frequency bands. 

3. I, Model&g the equilibrium ooltage 

At thermodynamic equilibrium, the terminal voltage of a lead/acid battery adjusts to an equilibrium voltage V,, that 
depends mainly on the electrolyte concentration and, thus, on the SOC. A sufficient approximation for the equilibrium 
voltage depending on the molality m in mol/kg at 25 “C is according to Ref. [4] 

V,(m) -= 
V 

1.9228 + 0.147519log m + O.O63552(log m)’ + O.O73772(log m)3 + O.O33612(log m)4 (‘1 

where 1 mole electrolyte is consumed by drawing an electrical charge of 1 F from the battery. The average molality of 
sulfuric acid calculated over the complete battery may then be derived as a function of the drawn charge Q, 

m(Q,) = mBatrfull - & 
el 

where mBat full represents the electrolyte molality of a completely charged battery; it has usually an amount of 

mBatt full = 6.25 mol/kg [5]. MC, stands for the electrolyte mass and depends on the type and the nominal capacity of the 
battery. 

In the case of sealed batteries, it is difficult to measure the electrolyte mass. Therefore, the electrolyte mass and molality 
are derived for full SOC by parameter fitting to measured values. Fig. 4 illustrates this technique for a Sonnerischein dry-fit 
traction block, Model 6V- 160. 

At first, the equilibrium voltage as a function of the molality is linearized in one operating point in order to calculate the 
electrolyte mass. The molality of the completely charged battery is chosen as the operating point. In this way, the following 
can be derived 

V,(m) = VOlm=6.25,no~~~X + Am% 
m= 6.25 mol/kg 

where Am = m - 6.25 mol/kg, and 

“o(m) m 
- = 1.917 + 0.0329~ 

V mol/kg 

The terminal voltage gradient of a single battery cell can be deduced from Fig. 4 

AV,, 1 V 
-z-- 
AQ, 750 Ah 

Fig. 3. Simplified complete equivalent circuit of a lead/acid battery based on Randles’ theory. 
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Fig. 4. 

0 5 10 15 20 25 30 

time/h 

Adapting the dependence of equilibrium voltage on state-of-charge for a Sonnenschein dry-fit traction block 6V-160. 

This leads to an electrolyte mass per cell of the Sonnenschein dry-fit traction block 6V-160 as approximately 

AQ, dV, 
II‘&- -- 

FAVo dm m= 6.25 mol/kg 
= 0.92 kg 

Rqs. (1) and (2) d escribe the dependence of the equilibrium voltage V, on the drawn charge Q,. With this connection, 
the block diagram of the equilibrium-voltage model in Matlab-Simulink (Fig. 5) can be derived. 

3.2. Modelling the electrically conductive media 

The finite conductivity of all electrically conductive media within the battery (especially within the ele:ctrolyte) causes a 
voltage drop. This effect is often termed as ‘polarization’. Since the electrolyte conductivity can be consi.dered as constant 
for concentrations higher than 2 mol/kg [4], a constant equivalent resistance Ri is used for modelling the lbattery resistance. 
According to our measurements of the Sonnenschein dry-fit traction block 6V- 160, this equivalent resistance Ri is 0.65 rn0 
per cell. 

3.3. Modelling the double-layer capacitance 

The overvoltage at the electrolytic double-layer depends on the charge stored in the double layer. This can be described 
by a differential double-layer capacitance which is a function of the voltage at the double layer and is given by Ref. [6] 

dQD 
6,(v,)=~=A, 

~c~~~~,Ez~F~ 

D RT 

After renaming the constants in Eq. (3), EZq. (4) is derived 

cD(vD) = cD1 CoSh(cD2VD) (4) 

The constants cn, and cn2 are experimentally obtained from impedance spectra as a function of the overvoltage vn (see 
Section 3.4). Fig. 6 shows the fit result that is based on a least-square algorithm. 

Fig. 5. Equilibrium-voltage block diagram of the lead/acid battery in Matlab-Simulink. 
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Fig. 6. Fitting the parameters co, and cn2 of the differential double-layer capacitance to the measured impedance data of a Sonnenschein dry-fit traction 
block 6V-160 (c,, = 252.7 F, l/c,, = 6.28 mV). 

Integrating the differential double-layer capacitance along the overvoltage leads to the charge Q, stored in the 
double-layer 

Q, = ~““c,,( V)dV= E sinh( c,,V,) 

The overvoltage at the double layer results from the inverse function of Eq. (5) 

(5) 

(6) 

3.4. Model&g the charge-transfer resistance 

The reaction equilibrium can be altered in the direction of either the charge or the discharge reaction by applying an 
electric field to the interface. The resulting Faraday current density is described by the Butler-Volmer equation [ 1,7,8] as a 
function of the charge-transfer overvoltage no at the interface 

IF = -i,[ew(-%vD) -exp(%(l- a)~~)] (7) 

All constants of Eq. (7) are renamed 

I, = - $ [exp( -2c,, UVD) - exP@,z(l- 4VD>l (8) 
The differential charge-transfer resistance RJ is measured by impedance spectroscopy for some superimposed direct 

currents I, which cause constant overvoltages V, at the interface. 
First, the inverse function of Eq. (8) must be derived for the calculation of cr, and cr2. In order to inverse Eq. (8), 

parameter CY has to be adjusted to 0.5. This causes an error that remains small if either charging or discharging, is considered 

I, = cr, sinh( cFzVD) (9a) 

(9b) 
- 

a,=!.$2 2 
F IF j  F ‘F2 && + i; (10) 

Second, the constants cF, and cp2 are derived by fitting Eq. (10) to the measured values. The integral performance of the 
phase transfer can be characterized with help of the Eq. (9). The least-square fit of the parameters is illustrated in Fig. 7 for 
a Sonnenschein dry-fit traction block 6V-160. 

The block diagram of the transfer resistance and the double-layer capacitance in Matlab-Simulink is given in Fig. 8. 

3.5. Model&g the concentration overvoltage 

The dependence of the concentration overvoltage on current and frequency is highly non-linear. The modelling of the 
concentration overvoltage involves five steps: 
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Fig. 7. Parameter tit cFI and cFz of the differential transfer-resistance to themeasured impedance data of a Sonnenschein dryfit 1:raction block 6V-160 

(C F, = 12.4 A, l/cFz = 6.70 mV). 

1. linearizing the concentration overvoltage and its small-signal characteristics; 
2. measuring the parameters of the small-signal mode1 by impedance spectroscopy for several superimposed direct currents; 
3. determining the small-signal parameters as a function of the direct current in each operating point; 
4. deriving the large-signal model from integrating the small-signal characteristics along the current or the voltage [9], and 
5. transforming the large-signal mode1 back from the frequency into the time domain, 

Such non-linear models require numerical integration techniques for solution. But today, this bears no restrictions if 
modern simulation programs such as Matlab-Simulink are used for calculation. 

3.5.1. Warburg impedance 
During discharging, the sulfuric acid is consumed and a diffusion process starts [8]. In the case of simple diffusion, 

Warburg gives differential resistances under three different boundary conditions: 
(i) The electrolyte has the finite extension 1 and is limited by a reservoir of constant concentration (idNeal reservoir) 

%vl = 
RT 1 

p----tanh 
CZ’F’A, @? 

where p = jo. 
(ii) The electrolyte has the finite extension I and is limited by a non-permeable wall (no transport of any substance 

through the wall) 

(iii) In the limiting case of infinitely extended electrolyte (I + x), the two Warburg impedances are equal 

The three different types of the Warburg impedances are illustrated in Fig. 9. 

Fig. 8. Block diagram of the transfer-resistance and the double-layer in Matlab-Simulink. 
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Fig. 9. Nyquist plots of different Warburg impedances: (a) limited diffusion-layer and ideal reservoir at 

non-permeable wall at the boundary, and (c) unlimited diffusion layer. 
the boundary; (b) limited diffwion-layer and a 

3.5.2. Discussion of boundary conditions 
Since the electrolyte within the battery is spatially limited, the electrolyte cannot diffuse through this boundary from 

outside towards inside. A dynamic performance is expected here as it is described by the Warburg impedance I&,, (see Fig. 

9(b)). The results of experimental measurements rather show, however, a resemblance to the Warburg impedance &t (see 
Fig. 9(a)). Only at very low frequencies (fl 20 p.Hz, Znc = 0.1 A) can a performance according to gwL be Imeasured. 

This effect can be explained by assuming a different composition of the several diffusion zones [lo]. A sectional view 
through a lead/acid battery is given in Fig. 10. The area filled with electrolyte can be zoned twice: 

(A) The channels inside the porous electrode material can be modelled by cylinders vertical to the electrocle surface. In 
this case, the geometry of diffusion inside the porous electrode material is described by the effective diffusion length I* and 
the effective area A * . For the boundary between the plates and the electrolyte, a condition according to (i) in Section 3.5.1 
and thus a Warburg impedance &,, is assumed. 

(B) Diffusion exists between the plates in the gelled electrolyte and in the separator. Even here, it can be assumed that 
the diffusion coefficient for the gelled electrolyte is smaller than that for free electrolyte. Given a diffusion process vertical 
to the electrode surfaces, the diffusion length is of the order of 1 mm. The assumption in (A) that diffusion has only one 
spatial component is here no longer valid for the area between the plates. The inhomogeneous current distribution within 
the plates [l 11 leads to an inhomogeneous acid stratification in the space between the plates. It is compensated by diffusion 
in parallel with the surfaces of the plates. In contrast to diffusion vertical to the surfaces of the plates, the difFusion area is 
much smaller and the diffusion length now much larger. Here, a boundary conditions according to (ii> in Section 35.1 can 
be assumed and the Warburg impedance zwL is applied. 

For steady-state operation, Ref. [lo] assumes two different diffusion layers in order to characterize the battery capacity as 
a function of the discharge current. A significant improvement of this function compared with that of Peukert is reached in 
that way. In this paper, two Warburg impedances are also applied for the characterization of the dynamic performance that 
describe separately the different diffusion mechanisms inside and outside the plates. As can be seen in Fig. 11, the 

porous 
1 electrode : 

electrolyte 
between the : 

material : electrodes : 

porous 
electrode I 
material L 

conductor 

: description : descnptlon : descnpbon : 
by C.J2 : by &vi : by .L~2 1 

Fig. 10. Sectional view through a lead/acid cell. The direction of diffusion in the electrolyte is marked with arrows for discharging. 
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Fig. 11. Nyquist plots of a Sonnenschein dry-fit traction block 6V-160 measured by impedance spectroscopy at different direct currents. The magnification 
in the lower part of the figure contains only the two invisible curves of the upper part. All other curves are suppressed in the magnification to give a clear 

illustration. 

performance according to &t or gwL can be very well distinguished only for small superimposed direct currents. & is 
negligible for small direct currents because of its relevance only for very small frequencies. But the performance of the 
battery is strongly influenced by I&, in the case of increasing direct currents. Therefore &,, and .& are included in the - 
battery model. 

3.5.3. Interpretation of the differential concentration model as an equivalent electric circuit 
Only the Warburg impedance &t is considered in the following. The calculation of & runs corresponding to this 

(complete derivation in Ref. [12]). The application of transport modelling in simulation programs requires the transforma- 
tion of &, back into the time domain. According to Ref. [ 131, the impulse response of the Warburg impedance &,, derives 
as (11) 

I (14) 

RT 
42 = 

cz2F2A,fi 

with 

I RTl 
k,, = 7912 = cz2F2A, D 

The constants k,, and k,, depend only on the d.c. component of the current flowing through the Warburg impedance. 
The weak dependence on the average electrolyte concentration, in other words, on the battery state-of-charge is neglected. 
The comparison of the impulse response of the Warburg impedance with the impedance of an RC-circuit 

l/C 
p + l/RC 

l - 0 i exp( - t/RC) 

shows that the Warburg impedance can be interpreted as a serial connection of an infinite number of RC circuits. The 
impulse response hft) of this serial connection has the form 

h,(t) = 5 --$ exp( - -z-- RK/“CK/,, 1 
n= 1 KI?l 



P. Mauracher, E. Karden/Jouml of Power Sources 67 (1997) 69-84 

Fig. 12. Equivalent electric circuit of the serial RC-connection used for the approximation of the Warburg impedance Z,, 

R Kin and CKIn are found by comparison of the coefficients in Eq. (14) 

k 
c 

II cz2F2A,l 
Kll2 

z-c 
2c2 2RT 

RTl 
R K/II = WInkI, = win cz2F2A,D 

8 

W’n = (Zn - 1)q 

Fig. 12 shows the equivalent electric circuit of the serial RC connection that is used for the approximation of the War-burg 
impendence Z,, . 

3.5.4. Parameter determination of the differential concentration model 
After measuring several impedance spectra for different superimposed direct currents, the parameters k,, and k,, of the 

Warburg impedance &,, are determined now as a function of the operating point. The parameter k,, affects the intersection 
of the impedance curve with the real axis at low frequencies and is therefore called R,, (cf., Fig. 2). The Parameter k,, 
influences the frequency scaling and thus is adjusted in a second step. In Fig. 13, the adaptation of the battery model to a 
measured Nyquist plot is given for a superimposed direct current of I,, = 2.5 A. The upper half of the figure shows the 
adaptation without taking Z,, into account. For very low frequencies, the deviation between the model and measurement 
becomes significant. The lower half of the figure shows the results of adaptation if Z,, is taken into account. Here, a very 
good correspondence between model and measurement can be seen particularly at low frequencies. 

The parameters k,, , k,,, k,, and k,, are given in Table 2 for several direct currents. 

4 6 a 10 

1. and 2, 

Fig. 13. Parameter adaptation of the battery model to a measured Nyquist plot for I nc = 2.5 A. Top curve: without taking the impedance Z,, into 

account: bottom curve: taking the impedance Z,, into account. Crosses: measured values at different frequencies. Circles: corresponding model 

performance. Thin lines: performance of the modelling; thick lines: deviation between modelling and measurement. 
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Table 2 
Measured parameters of the concentration model for a Sonnenschein dry-fit traction block 6V-160 

I, (A) k,, (a) k,, (R/s”*) k,, (0) k,, (n/s’/‘*) 

0.1 0.03750 0.000575 0.25 0.0000125 
1 0.00775 0.000260 0.25 0.0000090 

2.5 0.00380 0.000210 0.23 0.0000125 
5 0.00235 0.000145 0.19 0.0000115 

20 0.00040 o.ooao64 0.07 O.OOC0125 
40 0.00020 0.000055 0.03 0.0000125 

3.5.5. Transition to integral per$ormance of the concentration overvoltage 
For the transition of the concentration overvoltage from differential to integral performance, a connection must be found 

between the parameters k,, and k,, and the superimposed d.c. component of the current. At first, the parameter k,, is 
examined and is determined only by the steady-state performance of the concentration element. 

A constant current flowing for a very long time is equivalent to a stationary concentration gradient (time-invariant) 
within the electrolyte. The three-dimensional structure of the gradient determines the stationary concentration overvoltage 
PK. Its dependence on the current jK is assumed to be the general solution of an ordinary differential equation of second 
order (this assumption is verified by experiments explained later) 

iK, = Aexp( BV,,) - CexpDV,,) 

with constants A, B, C and D. Setting the boundary condition vK,liK, = 0 requires A = C. Renaming the coefficients leads 
to 

G, = cKII[ev(cK12vKI~) - exp( -cJ?dl - a>)] (16) 
Our experiments show that the simplification (Y = 0.5 causes large errors and thus is not permitted (contrary to Section 

3.4). The differential concentration resistance kK, was determined for several operating points by impedance measurements 
as a function of the superimposed direct current I,, through the concentration element. A simple parameter identification 
(as used in Section 3.4) requires the differentiated inverse function of Eq. (16). Since it is not possible to determine the 
inverse function analytically, an iteration technique is used here. First, the differential quotient of Eq. (16) is built for this 
purpose 

dJK,( k) 
di;;y, = h’Fo 

L(k+h) -L(L) 
h (17) 

The differential concentration resistance is given with this expression as a function of vKI 

R”,,( V,,) = lim _ 
h%, 

h-+0 &a( 6, + h) - iK,( 5) 
(18) 

The m measured values of the differential concentration resistance are known to be a function of the direct current i,, 
and not of the voltage v,, 

R”,,,( I,,,) for v = (1 . m) 

Since the voltage at the concentration element is not directly measurable, iK, cannot be measured as a function of ?,,. 
The two-staged iteration procedure which is used for the calculation of the parameters cKII, cK,* and CY~, is as follows: 

(i) step 1: suitable values are estimated for the parameters cK,,, c~,~ and cyK,; 
(ii) step 2: calculation of m values of the voltages VK,” with the help of a Newton method leads to 

L= c,,,[exp(c,,,V,,,(Y,,) -exp( -~K,2Fdl -ad)] forv= (1 . . . 4 

(iii) step 3: the parameters cK,,, c~,~ and CY~, are found with the help of a Newton method by minimizing the square 
error F between the measured and calculated differential concentration resistance 

h?KiKlv 
2 

- 

CKll [exp(c,,,(1/,,+h)a,,) -exp( -c~,~(V~I+~)(~ --a~,)) -~X~(~KIZVKI~KI) +exP(-c~,2V~,(1-a~,>>l II 
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direct amenI / (A] 

Fig. 14. Fitting the parameters cK,, and cK,* of the concentration resistance R,, to the measured resistance data of a traction battery-type Sonnenschein 
dryfit traction block 6V-160 (c K,I =0.1245 A, l/c,,, =5.52 mV, cy =0.628). 

(iv) step 4: step 2 of this procedure is repeated until the parameters cK,,, c~,~ and cxK, are sufficiently stable. 
Fig. 14 compares the interpolation result with the measured values. 
The concentration resistance R” KIn(ZKn) of a partial element in the concentration model is calculated by multiplying the 

complete concentration resistance iK,(IK) with the factor w,~ according to Eq. (15). With this, the current IK,,, through 
every partial concentration element is 

I Kln = cKll[exp( Yzf”) - exp( - ~“G~~-U,,] 

The differential concentration capacitances read as follows 

(19) 

- 
k,,( iii) = (20) 

Gh can be determined by the differentiation of the stationary quantities or by the division of the differential quantities, 
thus illustrating the connection between differential and integral performance. The constants k,, and k,, are measured as a 
function of the direct current i,. The principle of charge conservation is not broken by the concentration capacitance cK,, 
depending on iK because all d.c. components flow through the concentration resistance. Only if the concentration 
capacitance was a function of the a.c. component iK,, the law would be broken. 

A calculation is quite comfortable if a capacitance depends only on the voltage. Therefore, the dependence on the direct 
current iK,, = I, which flows through the concentration element is converted into a dependence on the voltage at the 
concentration resistance vK,,. With 

c,, = W&cl 
and Eq. (20) it leads to 

c”K,n( L) = &I( %) k,,(zyj 
2k:,(%,) = 2kfz(%$j (2’) 

voiiape at ha concantralim alement I (mv) 

Fig. 15. Fitting parameters c~,~ and cKlj of the concentration capacitance C,, to the performance of a Sonnenschein dry-fit traction block 6V-160 

(cKl= 57500 F, l/c,,, =51.3 mV). 
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I I I I 
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c,Qm x 
)I 

:V, 
-+ - 
2GlyvIn 4 

Ii, 

Fig. 16. Block diagram of a single concentration element RK,,. 

Eq. (21) is valid if only a direct current flows through the concentration element. If time-variable currents are allowed, it 
must read 

~K,n(VK,n> = k,t( $=> 
W2(3 

The following expression turned out to be a good description for the dependence on the voltage at differential 
concentration capacitances 

CKIn( VK,n> = 
CK13 

cosh( “$“) 

An example for fitting cK13 and c~,~ to measured values can be seen in Fig. 15. 
The charge of every single concentration capacitor is calculated by integration as 

eKln = ~~~/flc~,~[cosh(~)]-‘dv= 2c~~:~” [arctan[exp( cKz:“)] - :] 
(23) 

(22) 

With that, an expression for the voltage at the concentration element is found as a function of the stored charge 

V Kin (24) 

3.5.6. Modelling the concentration overvoltage in Matlab-Simulink 
Modelling the concentration overvoltages contains the description of the integral performance of Z,, as well as of Z,,. 

Since both modellings are set up in Matlab-Simulink quite similarly, only the modelling of Z,, is discussed in this Section. 
Eqs. (15) and (24) describe the diffusion performance of the lead/acid battery according to Z,, . Now, the process of 

modelling takes place in the state space. At first, the non-linear differential equations that describe the diffusion 
performance of a single concentration element are given as a block diagram (Fig. 16). 

function [sys, x01 = warburg(t,x,u,flag,c) 
% Warburg-Impedanz 

wi = 8./([1:~(6)]‘.*2-l).^2./pi^2; 

if flag==0 
sys = Ic(6);0;1;1;0;0]; 
x0 = wi.*O; 

elseif flag==1 
U = wi./c(5) .*asinh(c(5) .*x./c(4) ./wi); 
sys = - c(l)*(exp(c(3)*c(2)*U./wi)-exp(-(l-c(3))*c(2)*U./wi)) +u(l) 

elseif flag==3 
sys = sum( wi./c(5). *asinh(c(S) .*x./c(4) ./wi) ); 

else 
SYS = [I; 

end 

Fig. 17, Concentration model according to Warburg realized in Matlab-Simulink for a finite diffusion length which is limited by an ideal electrolyte 
reservoir. 
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The charge QKln is chosen as the state variable, the current ZK is input and the concentration overvoltage ViY,,, is output 
variable. The derivative of the state variable in time as well as the output variable must be set up as a linear co!mbination of 
the input and the state variable 

e Kin = -‘K/I exp 

[ [ 

%a,, arsinh( c~~~~~)] - exp[ - %(I - aKI) arsinh( cafe”)]] + Zk (25) 

V 
‘K14 Kin Q 

Kin 
~CK,~M’.I~ II 

The complete concentration overvoltage V,, results from the addition of the overvoltages VKIn at all concentration 
elements. This connection is taken into account by setting up the state variable as+ a vector Q KI, the order of which is equal 
to the number of partial concentration elements. Corresponding to this, a vector V,, is used which contains the overvoltages 
at every concentration element. Vector G, sets the weighting factors. The input ZK remains a scalar because the same 
current Z, flows through all concentration elements. 

With the function 

i= 1 

the state equations are written as 

v,,= sum[ $ln[tan[s + t)]] 

(26) 

dwialimbetweensimuiationandmeeauremenl 
time/(s) 
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eachwarmltageasalunetlonoftLne(aimulatlon) 

Fig. 18. Diagram 1: current; diagram 2: overvoltage per cell (grey: measurement; black: simulation): diagram 3: deviation between simulation and 
measurement, and diagram 4: division of the overvoltages according to their physical causes. 



82 P. Mauracher, E. Karden / Journal of Power Sources 67 (1997) 69-84 

50 100 150 

deviationbetweensimulationand~urement 
tlme/(mln) 

-50 
0 50 100 150 

ttme/(min) 

Fig. 19. Diagram 1: current; diagram 2: overvoltage per cell (grey: measurement; black: simulation); diagram 3: deviation between simulation and 

measurement, and diagram 4: division of the overvoltages according to their physical causes. 

Please note that the argument of the inverse hyperbolic sine is not a vector division but a division element by element. 
Vectors with infinite dimensions cannot be technically realized. Therefore, the sum is finished with the element z. 

This causes an error in thermodynamic equilibrium state of 

(27) 

If the number z of partial concentration elements is chosen sufficiently high, this error is negligible. The conversion of 
the state equations into an ‘S-function’ in Matlab-Simulink is shown in Fig. 17. 

4. Verification of the battery model and discussion of the results 

It is necessary to verify the battery model in order to evaluate its quality. This verification has to bme based on new 
measurements which are not previously used to determine any model parameter. Usually, the validity of any complex model 
cannot be proven completely. Therefore, a model verification should examine precisely those states of operation that 
dominate in the application of the model. 

Three different experiments were conducted in order to verify our model of the lead/acid battery. The experiments differ 
in frequency and amplitude of the current, and they approximate the real battery operation in an electric vehicle. The Figs. 
18-20 illustrate the experiments. In all experiments, the battery current is given as a function of time plotted in the first 
diagram of each figure. Below, the second diagram shows the battery voltage response per cell (measured: grey, as well as 
simulation result: black). The deviation between measured and simulated voltage, as plotted in the third diagram, allows 
evaluation of the quality of the battery model. The last diagram shows the division of all overvoltages according to their 
physical causes. It is used to judge the relevance of every single overvoltage mechanism and thus the relevance of each part 
of the battery model. 

The experiment with a duration of 300 s (Fig. 18) examines the model at higher frequencies. Here, the model 
performance under fast load changes is characterized. The deviation between measured and simulated value stretches over a 
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Fig. 20. Diagram 1: current; diagram 2: overvoltage per cell (grey: measurement; black: simulation); diagram 3: deviation between simulation and 
measurement, and diagram 4: division of the overvoltages according to their physical causes. 

range of & 2 mV except for one interval. This performance is equivalent to a model error of only + 0.1% related to the 
battery terminal voltage. 

During the experiment shown in Fig. 19, the battery is discharged by - IO%. It serves as a vetification for the fang-time 
stability of the model. Here, the deviation between measured and simulated cell voltages is smaller than :t4 mV which 
corresponds to a model error of + 0.2%. Only after switching off high currents (see Fig. 19 between t = 50 nnin and t = 60 
min) the error doubles. This effect is probably caused by neglecting the migration mechanism (see Section 3.5). 

The experiment referred to in Fig. 20 is the most realistic test of the battery model. Here, the terminal voltage and the 
battery current were measured on a dynamometer during one phase of an ECE cycle in a CitySTROMer type A3. The 
vehicle was equipped with a Sonnenschein dry-fit traction block 6V-160. For simulation, the measured current was used as 
input of the battery model. As a result, the simulated voltage characteristic of 48 serial-connected cells deviates from the 
measured only about 1 V maximum. The model parameters were not measured at the CitySTROMer battery but at a much 
older one. Nevertheless, the extraordinarily good results make this battery model very convincing. This demonstrates the 
stability of the battery model against ageing, state-of-charge and temperature. Moreover, the model performance is 
satisfactory even during intermittent charging caused by regenerative braking. 

5. List of symbols 

A,, A* surface {area) of the interface, effective 
c, c, concentration 
CD, c”, double-layer capacitance, differential 

‘Dir cD2 parameter of the electrolytic double-layer model 

‘FL’ cF2 parameter of the charge-transfer model 
‘KIl* cK12’ aKI parameter of the concentration model (infinite electrolyte layer) 
c CKln KI’ capacitance of the concentration model, single part element 
D diffusion constant 
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F 

GD 
h(t) 
1, I,, i 

10 

I,, I,, fF, i, 
I ’ IKIn 
1:: i, 

k,,, k,, 
1, 1’ 

m, mBatt full 

MA 

Q, Q,,Q, 
Q QKI~ Kill) 

R 

R,, R”, 

Ri 
R RKln KI’ 

T 

VO 

VD 
I/K,* VK,n 

WKIII 

z 

ReIZ), Im(Z) 
G/P =%vI. 

Greek letters 
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Faradayic constant 
differential charge-transfer admittance 
impulse response 
electric current, direct current, current density 
exchange current density 
Faraday part of the current, current density 
current through the concentration element 
current which polarizes the electrolytic double layer 
parameter of the Warburg impedance 
length of the diffusion layer, effective length 
molality, molality of a completely charged battery 
mass of the electrolyte 
charge, charge stored in the electrolytic double layer, withdrawn charge 
charge of a single concentration element 
gas constant 
charge-transfer resistance, differential 
equivalent resistance 
concentration resistance, resistance of a single concentration element 
temperature 
equilibrium voltage 
voltage at the electrolytic double layer 
voltage at the concentration model, voltage at a single concentration element 
weighting factor 
impedance 
real part of the impedance, imaginary part of the impedance 
differential Warburg impedance for infinite and finite diffusion layer 

activity 
charge-transfer overvoltage: integral part, direct part, differential part 
dielectric constant, of free space, related 
charge carrier mobility 
time constant of charge transfer and electrolytic double layer 
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